In today’s world, the term “plastic” is ubiquitous, encompassing a vast array of materials that have become indispensable in our daily lives. Originally derived from natural materials like horn and rubber, the development of synthetic plastics emerged as a response to the growing demand for durable, versatile, and cost-effective materials. From early semi-synthetic forms to the diverse range of polymers we use today, plastics have evolved from a scientific marvel into a manufacturing staple.
Contrary to what we associate it with today, “plastic” was originally an adjective that meant “pliable and easily shaped.” Now, it is a name used to refer to a specific group of materials called polymers, which are made up of long chains of molecules. Polymers are abundantly present in nature, but in recent years, scientists have begun creating synthetic versions as a more widely available form of “plastic” substances.
Saving the Elephants
While regular production of consumer goods grew significantly following the Industrial Revolution, the availability of naturally-derived materials did not, and manufacturers were faced with the need for synthetic materials that could keep up with demand. For millennia, natural plastics such as horn, tortoiseshell, amber, rubber, and shellac were commonly used to create a variety of products, from jewelry and combs to cutlery and piano keys. However, in the late 19th century, a growing concern arose over the environmental impacts of using these materials, emphasized by the suggestion that elephants were in danger of becoming extinct due to the popularity of using their tusks to make goods from ivory.
In 1863, a New York billiards supplier published an ad offering $10,000 in gold to anyone who could create a sufficient alternative to ivory. In response, businessman John Wesley Hyatt began experimenting with various combinations of solvents, building off the research of chemist Alexander Parkes, who created the first manufactured plastic, “Parkesine,” out of cellulose nitrate. By combining nitrocellulose with camphor, Hyatt invented celluloid – the first semi-synthetic plastic, which was quickly put to use in the manufacturing of goods meant to mimic the look and function of items made from natural materials.
Fake it ‘Til You Make It
The first fully synthetic plastic, polyoxybenzylmethylenglycolanhydride, was inadvertently created in 1907 by scientist Leo Hendrik Baekeland in his pursuit of a less expensive and more readily available substitute for shellac. One day, during his experimentation, he combined formaldehyde with phenol and applied heat to the mixture. When he returned the next day, he discovered a substance not like the shellac he was expecting but rather a polymer that did not melt, dissolve, or crack. He named the substance Bakelite and three years later established a company to manufacture it commercially.
This revolutionary new form of synthetic resin quickly became a popular choice for commercial and industrial goods, and it was advertised as “the material of a thousand uses.” Its combination of moldability and durability made it excellent for a variety of applications, especially in the growing automotive and electric power industries, where it was used for components such as knobs, dials, circuitry panels, sockets, and insulators. It even introduced the novelty of making brightly-colored items, including buttons, jewelry billiard balls, iron handles, and children’s toys. By 1944, Bakelite could be found in more than 15,000 different products and is still commonly used to make dominoes, mah-jongg tiles, checkers, and chess pieces.
Life in Plastic
The invention of Bakelite marked the beginning of the modern plastics industry, spurring the manufacture of a multitude of products enhanced by the new materials that offered more desirable properties than previously utilized natural resources, such as toasters, coffee makers, hair dryers, vacuum cleaners, headphones, and more. Other scientists soon also developed new forms of thermosetting plastics that eventually became favored over Bakelite for their increased durability and flexibility, as well as other versatile compounds such as polystyrene, polyester, polyvinyl chloride, polyethylene, and nylon.
Today, there are hundreds of thousands of types of polymers that can be customized for different purposes just by changing their structure (e.g., adding an additional carbon molecule to flexible polyethylene creates a more robust polypropylene.) In response to environmental concerns, companies have also begun developing different kinds of plastic, such as polylactic acid (PLA), derived from corn starch and can be composted, disintegrating over time. Similarly, there has also been a return to the use of natural materials to create bioplastics, such as polyethylene made from sugar cane.
The invention and proliferation of plastics represent a transformative chapter in the history of materials innovation, which has not only revolutionized manufacturing processes but also played a pivotal role in shaping modern consumer culture. What began as a quest to find alternatives to natural materials like ivory and shellac has evolved into a multi-billion-dollar industry with applications ranging from consumer goods to cutting-edge technologies, leaving an indelible mark on both science and society
If you enjoyed this invention story, you might also like these about seismographs, silly putty, and super glue.
To learn more about Custom Powder Systems and the art of engineering, sign up for our newsletter.